
Using Ada in non-Ada systems

Industrial Presentation

Ada-Europe 2018

White Elephant GmbH

AE18-Using Ada in non-Ada systems White Elephant GmbH 1

Experience report on incorporating packages
written in Ada into predominantly non-Ada
microprocessor based systems.

AE18-Using Ada in non-Ada systems White Elephant GmbH 2

Why aren’t we already using exclusively Ada?

AE18-Using Ada in non-Ada systems White Elephant GmbH 3

Because in the late eighties and early nineties
Ada compilers were:

• Rare – especially for microprocessors

• Slow

• Required vast resources

• Expensive

So we used Modula-2

AE18-Using Ada in non-Ada systems White Elephant GmbH 4

• Invented by Niklaus Wirth.

• ISO standard 10514

Pascal based, shares many features with Ada

• Verbose, non ambiguous syntax

• Specification and implementation are
separately compiled units

Originally we used :

AE18-Using Ada in non-Ada systems White Elephant GmbH 5

• Cross compilers

– Now we translate the Modula-2 into C and then
compile that to target

• Wind River Diab tool chain

– Now we use GCC

• M68332 & Motorola Coldfire

– Now we use ARM

The GCC we use to compile our C for ARM is the
same compiler that we use to compile our Ada
for ARM.

AE18-Using Ada in non-Ada systems White Elephant GmbH 6

Namely v6.3.1 as distributed by AdaCore as their
GPL 2017

Because we use the same compiler their objects
are compatible

So, at least in theory, we can write a program
that is a mixture of Ada and Modula-2 / C

Except:

AE18-Using Ada in non-Ada systems White Elephant GmbH 7

Our existing system has a run-time and

Probably not a good idea for an application to
have more than one run-time so either:

1. Ada uses ours

2. We use Ada’s

3. Restrict Ada so that it doesn’t require a
runtime

so does Ada

The latter is generally known as the Zero
Footprint profile for Ada (ZFA)

AE18-Using Ada in non-Ada systems White Elephant GmbH 8

• Pragma restrictions in the file System.ads

• Whether or not certain specification files can
be found in the search path.

Implemented by :

ZFA defined by restrictions in the file System.ada

AE18-Using Ada in non-Ada systems White Elephant GmbH 9

• pragma Restrictions (No_Exception_Propagation);

• pragma Restrictions (No_Elaboration_Code);

• pragma Restrictions (No_Implicit_Dynamic_Code);

• pragma Restrictions (No_Finalization);

• pragma Restrictions (No_Tasking);

• pragma Restrictions (No_Delay);

• pragma Discard_Names;

These restrictions mean we lose Ada features.

AE18-Using Ada in non-Ada systems White Elephant GmbH 10

• Tasks

• Protected Objects

• Controlled Types

• The delay statement

• Dynamic storage allocation using new

• Exception propagation

Additional voluntary restrictions:

AE18-Using Ada in non-Ada systems White Elephant GmbH 11

pragma Restrictions (No_Floating_Point)

Because our target has no hardware support for
floating point

pragma Restrictions (No_Seconday_Stack)

Because our target has very little RAM

Without a secondary stack we cannot write
functions that return an unconstrained type.

AE18-Using Ada in non-Ada systems White Elephant GmbH 12

This means that functions can’t return Strings
nor can we use ‘img or ‘image

AE18-Using Ada in non-Ada systems White Elephant GmbH 13

Without elaboration:

• Global variables can only be initialised to
values known at compile time

• No package bodies

• Pre-elaborated packages can only call other
pre-elaborated or pure packages

Originally chose not to support elaboration.

Implemented by
pragma restrictions (No_Elaboration_Code);

Still useful?

AE18-Using Ada in non-Ada systems White Elephant GmbH 14

For example:

• Named parameters

• Named fields in constructors

• Private types, functions and procedures

• Bit level specification in representation clauses

Even a very reduced Ada is better than
Modula-2 and presumably is much much
better than writing in C!

A simple example.

AE18-Using Ada in non-Ada systems White Elephant GmbH 15

Ada name mangling:

• package name + “_” + “_” + procedure name

• Name entirely in lowercase

C calling a parameter-less Ada procedure

C declaration:
extern void adaunit__adaprocedure(void);

C call:
adaunit__adaprocedure();

Then…

AE18-Using Ada in non-Ada systems White Elephant GmbH 16

• Compile Ada

• Compile C

• Link together to form an executable

That’s all you need because ZFA doesn’t
require any libraries.

Some language features require the package
specification but a body isn’t required.

AE18-Using Ada in non-Ada systems White Elephant GmbH 17

Because the implementation is intrinsic (built-
in) to the compiler

For example:

ada.unchecked_conversion

Requires the file a-unccon.ads to be found in
the path.

Note the “crunched” name!

AE18-Using Ada in non-Ada systems White Elephant GmbH 18

Historical throwback?

Others we needed were:

• a-except.ads = ada.exceptions

• interfac.ads= interfaces

• s-maccod.ads = system.machine_code

• s-stoele.ads = system.storage_elements

• s-unstyp.ads = system.unsigned_types

Debugging

AE18-Using Ada in non-Ada systems White Elephant GmbH 19

-dwarf-3

Standard DWARF debugging information

Can continue to use our own tool but…

Needed to be enhanced to support objects
with a size and position not necessarily a byte
multiple.

Link time optimisation

AE18-Using Ada in non-Ada systems White Elephant GmbH 20

-lto

In-lining over units

Unfortunately loses original name of compilation
units.

Solution = Always name mangle (even if local)

Fortunately this is what Ada does!

Exception Handling

AE18-Using Ada in non-Ada systems White Elephant GmbH 21

Even simple code requires exception handling

Without a runtime exceptions must be
handled locally

Effectively a jump.

Consider:
X : Natural;

X := X + 1;

This can raise constraint_error

AE18-Using Ada in non-Ada systems White Elephant GmbH 22

We could provide a last chance handler but
instead we chose to either:

1. Rewrite the code so that the exception
can’t happen

2. Catch and handle the exception locally

Tip:

Use switch –gnat.x

Warns if implicit or explicit exception not
covered by local handler.

AE18-Using Ada in non-Ada systems White Elephant GmbH 23

But…

The current compiler v6.3.1 doesn’t always
get it right

Example:

AE18-Using Ada in non-Ada systems White Elephant GmbH 24

type Handler is access procedure;

The_Handler : Handler;

procedure Test is

begin

if The_Handler /= null then

The_Handler.all;

end if;

end Test;

The compiler warns that an exception can be
raised – which in fact it obviously can’t!

AE18-Using Ada in non-Ada systems White Elephant GmbH 25

Two solutions:

1. Disable warnings

– Still links. Which shows that an exception
wasn’t really generated

– But Disable/Enable warnings is messy

2. Use Pragma supress

– Hope that a future compiler will one day warn
us that the pragma is superfluous

Example:

AE18-Using Ada in non-Ada systems White Elephant GmbH 26

type Handler is access procedure;

The_Handler : Handler;

procedure Test is

pragma Suppress (Access_Checks);

begin

if The_Handler /= null then

The_Handler.all;

end if;

end Test;

Global variables

AE18-Using Ada in non-Ada systems White Elephant GmbH 27

Could use an initialisation routine and hope that
we remember to call it (error prone)

Hard not to use globals

Often need to be initialised

However if the value is known at compile time
then because Ada uses the same convention
as C, Ada global variables are initialised by the
same mechanism as C variables are.

For details on how this works see follow-up
article in the Ada User Journal

AE18-Using Ada in non-Ada systems White Elephant GmbH 28

Which members of Ada-Europe receive as
part of their membership.

Visit our web site
www.ada-europe.org/join

And leave your contact details

http://www.ada-europe.org/join

But what if the value isn’t known at compile
time?

AE18-Using Ada in non-Ada systems White Elephant GmbH 29

This type of initialisation is performed by
elaboration code

We originally hoped that we could do without
elaboration

But… Modula elaborates it‘s module bodies
and restricting our Ada to only calling
Modules without bodies would have been too
prohibitive.

AE18-Using Ada in non-Ada systems White Elephant GmbH 30

Ada packages that require elaboration
generate routines named __elabb or __elabs

All you need to do is call them…

In the right order.

AE18-Using Ada in non-Ada systems White Elephant GmbH 31

Modula

Ada Modula

AdaModula

IMPORT

with

DEFINITION MODULE [“Ada”]

????

Pragma Modula_Import (ModulaUnit);

AE18-Using Ada in non-Ada systems White Elephant GmbH 32

-gnatwG

Suppress warnings on unrecognised pragmas

Therefore our IDE had to take over the
detection of unrecognised pragmas

However the Ada RM requires that such
warnings appear.

Because only it knows the names our our new
pragmas

AE18-Using Ada in non-Ada systems White Elephant GmbH 33

extern void __attribute__((weak)) ModulaUnit_BEGIN(void);

extern void __attribute__((weak)) adaunit___elabb(void);

typedef void (*Unit_List[1])(void);

static const Unit_List Unit_Body_the_list = {

ModulaUnit_BEGIN,

adaunit___elabb};

Interrupt Routines

AE18-Using Ada in non-Ada systems White Elephant GmbH 34

ARM interrupt routines are simply
parameter-less procedures whose address is
placed into the vector table.

procedure Interrupt_Handler with Export;

pragma Use_Vector (36);

procedure Interrupt_Handler

with attach_handler (36);

Embedded Assembler

AE18-Using Ada in non-Ada systems White Elephant GmbH 35

with System.Machine_Code; use System.Machine_Code;

procedure Disable_Interrupts with Inline is

begin

Asm ("msr primask, %0;",

Inputs => Integer'asm_input ("r", 1),

Clobber => "memory",

Volatile => True);

end Disable_Interrupts;

Summary

AE18-Using Ada in non-Ada systems White Elephant GmbH 36

Does it work?

Yes.

We converted two ARM based projects:

1. Hard real-time motor control program used
to position an astronomical telescope.

2. Modem used to relay IP and serial
communications over high voltage power
lines.

Problems

AE18-Using Ada in non-Ada systems White Elephant GmbH 37

• INC / DEC

• ‘size is in bits

• Modula-2 expressions from left to right

• Can’t modify “in” parameters

Questions?

AE18-Using Ada in non-Ada systems White Elephant GmbH 38

